【蓝桥杯】简单数论4——丢番图方程

【蓝桥杯】简单数论4——丢番图方程蓝桥杯之简单数论 丢番图 丢番图方程

大家好,欢迎来到IT知识分享网。

1、二元线性丢番图方程

方程ax +by = c被称为二元线性丢番图方程,其中a、b、c是已知整数,x、y是变量,问是否有整数解
ax + by= c实际上是二维x-y平面上的一条直线,这条直线上如果有整数坐标点,方程就有解,如果没有整数坐标点,就无解。
【蓝桥杯】简单数论4——丢番图方程

 如果存在一个解,就有无穷多个解。

1.1有解的判断条件和通解的形式

定理:设a,b是整数gcd(a, b)=d。如果d不能整除c,那么方程ax + by=c没有整数解,如果d能整除c,那么存在无穷多个整数解。

解释:令a=da’,b= db’;有ax+by = d(a’ x +b’y)=c;如果x、y、a’、b’都是整数,那么c必须是d =gcd(a, b)的倍数,才有整数解

如果(x_0,y_0)是方程的一个特解,所有的解(通解)可的形式x=x_0 +(b/d)n,y= y_0 – (a/d)n,其中n是任意整数。

【蓝桥杯】简单数论4——丢番图方程

说明: x值按b/d递增,y值按- a/d递增。设(x_0,y_0)是一个格点(格点是指x、y坐标均为整数的点),移动到直线上另一个点(x_0+\Delta x,y_0+\Delta y),有a\Delta x+b\Delta y=0。△x和Ay必须是整数,(x_0+\Delta x,y_0+\Delta y)才是另一个格点。  

\Delta x最小是多少?因为a/d与b/d互素,只有\Delta x = b/d,\Delta y =- a/d时,\Delta x\Delta y才是整数,并满足a\Delta x +b\Delta y = 0。 

定理概况为: ax + by= c有解的充分必要条件d = gcd(a, b)能整除c

(2)方程25x + 15y = 70存在无穷个解,因为gcd(25,15)= 5且5整除70,一个特解是x_0=4,y_0 = -2,通解是x=4 + 3n,y = -2- 5n

1.2例题一:线段上的格点数量

【题目描述】在二维平面上,给定两个格点p_1=(x_1,y_1)p_2=(x_2,y_2),问线段p_1p_2上除了p_1,p_2外还有几个格点?设x_1< x_2

计算步骤:

(1)、用p_1(x_1,y_1)p_2(x_2,y_2)表示线段,线段表示为:

(y_2-y_1)x + (x_1-x_2)y = y_2x_1-y_1x_2

d = gcd(a,b) = gcd(\left | y_2-y_1 \right |,\left |x1-x2 \right |)

(3)、对照通解公式x = x_0+ (b/d)nn,令特解是x,代入限制条件x_1<x<x_2,有:
x_1< x+((x_1-x_2)/d)n < x2

当-d < n< 0时满足上面的表达式,此时n有d-1种取值,即线段内有d-1个格点。

2、方程的特解与扩展欧几里得算法

求解方程ax + by = c的关键是找到一个特解
根据定理的描述,解和求GCD有关;
求特解用到了欧几里得求GCD的思路,称为扩展欧几里得算法

2.1扩展欧几里得算法

方程ax + by = gcd(a, b),根据定理,它有整数解
定理:设a, b是整数且gcd(a, b)=d。如果d不能整除c,那么方程ax + by=c没有整数解,如果d能整除c,那么存在无穷多个整数解。
扩展欧几里得算法求一个特解(x_0,y_0)的代码:

def exgcd(a,b): if b == 0:return 1, 0 x,y = exgcd(b,a % b) return y, x - a // b * y # 返回特解xo,yo a,b = map (int,input ().split())# 试试6x+15y=3 x,y = exgcd (a,b)#计算得到特解 print(x, y)

2.2扩展欧几里得算法与方程ax+by=c的特解

(4)对照ax +by =c,得到它的一个解(x_0',y_0')是:x_0'= x_0c/d,y_0'= y_0c/d

(5)方程ax + by = c的通解x=x_0'+ (b/d)n,y =y_0' - (a/d)n

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/133713.html

(0)
上一篇 2025-07-20 17:00
下一篇 2025-07-20 17:15

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信