【深度学习实践】HaGRID,YOLOv5,手势识别项目,目标检测实践项目

【深度学习实践】HaGRID,YOLOv5,手势识别项目,目标检测实践项目HaGRID HAndGestureR 的大型图像数据集 用于手势识别系统

大家好,欢迎来到IT知识分享网。

数据集介绍

https://github.com/hukenovs/hagrid

HaGRID(HAnd Gesture Recognition Image Dataset)的大型图像数据集,用于手势识别系统。这个数据集非常适合用于图像分类或图像检测任务,并且可以帮助构建用于视频会议服务、家庭自动化系统、汽车行业等领域的手势识别系统。

HaGRID数据集的规模达到了723GB,包含554,800张FullHD RGB图像,被分为18类手势。此外,一些图像中还包含no_gesture类,用于表示图像中存在第二只空闲手的情况。这个额外的类别包含了120,105个样本。数据集根据主题用户ID进行了划分,分为训练集(74%)、验证集(10%)和测试集(16%),其中训练集包含410,800张图像,验证集包含54,000张图像,测试集包含90,000张图像。

数据集中包含了37,583位独特的人物以及至少这么多个独特的场景。被试者的年龄跨度从18岁到65岁不等。数据集主要在室内收集,光照条件有较大的变化,包括人工光和自然光。此外,数据集还包括了在极端条件下拍摄的图像,例如面对窗户或背对窗户。被试者需要在距离相机0.5到4米的范围内展示手势。</

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/135440.html

(0)
上一篇 2025-07-04 19:26
下一篇 2025-07-04 19:33

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信