概率、矩阵知识总结

概率、矩阵知识总结一 统计学基本概念 均值 方差 标准差统计学里最基本的概念就是样本的均值 方差 标准差

大家好,欢迎来到IT知识分享网。

一、统计学基本概念:均值、方差、标准差

统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:

均值:概率、矩阵知识总结

方差:概率、矩阵知识总结

标准差:概率、矩阵知识总结

均值描述的是样本集合的中间点,它告诉我们的信息是有限的。

方差(variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。

而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。

以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],两个集合的均值都是10,但显然两个集合的差别是很大的,计算两者的标准差,前者是8.3后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是n,是因为这样能使我们以较小的样本集更好地逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。

二、协方差及其意义

标准差和方差一般是用来描述一维数据的,但现实生活中我们常常会遇到含有多维数据的数据集,最简单的是大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子的欢迎程度是否存在一些联系。协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义:

概率、矩阵知识总结

来度量各个维度偏离其均值的程度,协方差可以这样来定义:

概率、矩阵知识总结

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐越受女孩欢迎。如果结果为负值, 就说明两者是负相关,越猥琐女孩子越讨厌。如果为0,则两者之间没有关系,猥琐不猥琐和女孩子喜不喜欢之间没有关联,就是统计上说的“相互独立”。

从协方差的定义上我们也可以看出一些显而易见的性质,如:

概率、矩阵知识总结

概率、矩阵知识总结

三、协方差矩阵

前面提到的猥琐和受欢迎的问题是典型的二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算概率、矩阵知识总结个协方差,那自然而然我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:

概率、矩阵知识总结

这个定义还是很容易理解的,我们可以举一个三维的例子,假设数据集有三个维度,则协方差矩阵为:

概率、矩阵知识总结

可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差。

 

参考:http://www.cnblogs.com/chaosimple/p/3182157.html

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/142660.html

(0)
上一篇 2025-05-08 21:00
下一篇 2025-05-08 21:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信