大家好,欢迎来到IT知识分享网。
KTO全称为Kahneman-Tversky Optimisation,这种对齐方法使在我们的数据上对大型语言模型(LLM)进行对齐变得前所未有地容易和便宜,而且不会损害性能。大型语言模型的成功在很大程度上得益于与人类反馈的对齐。如果ChatGPT曾经拒绝回答您的问题,很可能是因为它被训练为避免说出有争议的内容。然而,对于公司来说,对他们自己的LLM进行对齐一直是困难的。下面我们简单介绍下KTO方法,这种方法可以提高LLM的整体性能和质量,同时节省成本。
大规模对齐LLM
LLM对齐对于优化性能至关重要,但一直以来都很困难,因为:
这两个因素意味着,对于大多数组织来说,自己的LLM大规模对齐历史上是不可能的。但这一差距正在缩小。斯坦福研究人员最近用一种称为直接偏好优化(DPO)的技术解决了第一个问题,这在数学上等同于RLHF,同时更加简单,使得对齐对于开源努力变得可行。
剩下的瓶颈是数据。只有少数几个包含文本上人类偏好的公共数据集,而且它们是通用的。例如,如果你想要人类对两种LLM输出更准确地判断意大利经济状况的反馈,你需要咨询专业人士。但获取此类数据很昂贵,无论您是直接付费还是要求员工花费宝贵的时间提供反馈。
克服数据瓶颈
在Contextual AI项目中,作者已经找到了克服这一数据瓶颈的方法。通过研究经济学家Kahneman和Tversky关于人类决策的工作,设计了一种不需要像“输入X的输出A胜过输出B”这样的偏好的对齐方法。相反,对于输入X,我们只需要知道输出Y是可取的还是不可取的。这种单一反馈是丰富的:每个公司都有可以标记为可取(例如,销售成功)或不可取(例如,没有销售)的客户互动数据。
通过在三个公共数据集(Anthropic HH、Stanford Human Preferences 和 Open Assistant)的组合上对齐从 1B 到 30B 的模型,将 KTO 与现有方法进行比较。然后,遵循现在的标准做法,使用 GPT-4 将对齐模型的各代与数据集中提供的人类首选基线进行比较。
与其他对齐模型相比,Kahneman-Tversky 优化在性能上大幅提升,无论是标准微调还是 DPO
更多原理和细节请参考:
https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf
代码
https://github.com/ContextualAI/HALOs
class SimpleKTOTrainer(UnpairedPreferenceTrainer): """A simple version of KTO meant to introduce you to the HALOs repo.""" def loss(self, policy_chosen_logps: torch.FloatTensor, policy_rejected_logps: torch.FloatTensor, reference_chosen_logps: torch.FloatTensor, reference_rejected_logps: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: """Compute the Kahneman-Tversky loss for a batch of policy and reference model log probabilities. For each batch of n/2 chosen examples and n/2 rejected examples (belonging to n different inputs), calculate the loss as follows. If generation y ~ p_chosen, where x' ~ are the examples with rejected generations, we have the 'chosen' loss: L(x, y) := 1 - sigmoid(beta * (log p_policy(y|x) - log p_reference(y|x) - KL(p_policy(y_rejected|x') || p_reference(y_rejected|x'))) If generation y ~ p_rejected, , where x' ~ are the examples with chosen generations, we have the 'rejected' loss: L(x, y) := 1 - sigmoid(beta * KL(p_policy(y_chosen|x') || p_reference(y_chosen|x')) - [log p_policy(y|x) - log p_reference(y|x)]) """ chosen_KL = (policy_chosen_logps - reference_chosen_logps).mean().clamp(min=0) rejected_KL = (policy_rejected_logps - reference_rejected_logps).mean().clamp(min=0) chosen_logratios = (policy_chosen_logps - reference_chosen_logps) rejected_logratios = (policy_rejected_logps - reference_rejected_logps) losses = torch.cat((1 - F.sigmoid(self.config.loss.beta * (chosen_logratios - rejected_KL)), 1 - F.sigmoid(self.config.loss.beta * (chosen_KL - rejected_logratios))), 0) chosen_rewards = self.config.loss.beta * (policy_chosen_logps - reference_chosen_logps).detach() rejected_rewards = self.config.loss.beta * (policy_rejected_logps - reference_rejected_logps).detach() return losses, chosen_rewards, rejected_rewards
另外在最近有人对IPO/DPO/KTO性能做了对比:
对于 Zephyr 模型,我们观察到最好的性能是以最低的成本实现的。这在所有三种测试的算法中都是一致的,社区的一个有趣的后续实验是在 0.0-0.2 范围内进行细粒度扫描。虽然 DPO 可以获得最高的 MT Bench 分数,但我们发现 KTO(配对)在除一种设置之外的所有设置中都取得了更好的结果。IPO虽然有更强的理论保证,但除了一种情况外,在所有情况下似乎都比基本模型更糟糕。
https://huggingface.co/blog/pref-tuning
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/144777.html