图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)import matplotlib image as mpimgimport matplotlib pyplot as pltimport numpy as npimport sysimport osimport cv2from skima

大家好,欢迎来到IT知识分享网。

import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import sys import os import cv2 from skimage.util import random_noise sys.path.append('../') from Wavelet_2D import Wavelet_2D SAVE_OUNTPUTS = False if SAVE_OUNTPUTS: OUTPUT_DIR = './Outputs' OUTPUT_FORMAT = '.pdf' if not os.path.isdir(OUTPUT_DIR): os.mkdir(OUTPUT_DIR) plt.rc('text', usetex=True) plt.rc('font', family='serif') image = mpimg.imread('IMG__014553_621.png') image = image[:, :, :3] if image.dtype != np.uint8: tmp1 = np.zeros_like(image, dtype=np.uint8) for j in range(3): tmp1[:, :, j] = 255 * (image[:, :, j] - np.min(image[:, :, j])) / (np.max(image[:, :, j]) - np.min(image[:, :, j])) image = tmp1 image = cv2.resize(image, (256, 256)) image_sp = 255*random_noise(image, mode='s&p', amount=0.1) image_gs = 255*random_noise(image, mode='gaussian', mean=0, var=0.05) plt.figure(figsize=(10,5)) plt.subplot(1, 3, 1) plt.imshow(image) plt.title('Original Image', fontsize=15) plt.xticks([]); plt.yticks([]) plt.subplot(1, 3, 2) plt.imshow(image_sp.astype(np.uint8())) plt.title('Salt\&Pepper Noise', fontsize=15) plt.xticks([]); plt.yticks([]) plt.subplot(1, 3, 3) plt.imshow(image_gs.astype(np.uint8())) plt.title('Gaussian Noise', fontsize=15) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Image'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() 
图像的离散小波分解(不同种类噪声,Python)

SS_haar, SD_haar, DS_haar, DD_haar = Wavelet_2D(image,'Haar', 5) SS_haar_sp, SD_haar_sp, DS_haar_sp, DD_haar_sp = Wavelet_2D(image_sp,'Haar', 5) SS_haar_gs, SD_haar_gs, DS_haar_gs, DD_haar_gs = Wavelet_2D(image_gs,'Haar', 5)
 Processing Haar Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Haar Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Haar Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed!
SS_db4, SD_db4, DS_db4, DD_db4 = Wavelet_2D(image,'db4', 5) SS_db4_sp, SD_db4_sp, DS_db4_sp, DD_db4_sp = Wavelet_2D(image_sp,'db4', 5) SS_db4_gs, SD_db4_gs, DS_db4_gs, DD_db4_gs = Wavelet_2D(image_gs,'db4', 5)
 Processing Daubechies4 Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Daubechies4 Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Daubechies4 Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed!
SS_db6, SD_db6, DS_db6, DD_db6 = Wavelet_2D(image,'db6', 5) SS_db6_sp, SD_db6_sp, DS_db6_sp, DD_db6_sp = Wavelet_2D(image_sp,'db6', 5) SS_db6_gs, SD_db6_gs, DS_db6_gs, DD_db6_gs = Wavelet_2D(image_gs,'db6', 5)
 Processing Daubechies6 Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Daubechies6 Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Daubechies6 Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed!
SS_mh, SD_mh, DS_mh, DD_mh = Wavelet_2D(image,'mexicanhat', 5) SS_mh_sp, SD_mh_sp, DS_mh_sp, DD_mh_sp = Wavelet_2D(image_sp,'mexicanhat', 5) SS_mh_gs, SD_mh_gs, DS_mh_gs, DD_mh_gs = Wavelet_2D(image_gs,'mexicanhat', 5)
 Processing Mexican Hat Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Mexican Hat Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Mexican Hat Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed!
SS_sym2, SD_sym2, DS_sym2, DD_sym2 = Wavelet_2D(image,'sym2', 5) SS_sym2_sp, SD_sym2_sp, DS_sym2_sp, DD_sym2_sp = Wavelet_2D(image_sp,'sym2', 5) SS_sym2_gs, SD_sym2_gs, DS_sym2_gs, DD_sym2_gs = Wavelet_2D(image_gs,'sym2', 5)
 Processing Symlet2 Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Symlet2 Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed! Processing Symlet2 Wavelet Decomposition ... Decomposition Level 1 Completed! Decomposition Level 2 Completed! Decomposition Level 3 Completed! Decomposition Level 4 Completed! Decomposition Level 5 Completed!
import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Haar Wavelet - Image Without Noise', fontsize=20) for i in range(len(SS_haar)): tmp1 = SS_haar[i].astype(np.uint8()) tmp2 = SD_haar[i].astype(np.uint8()) tmp3 = DS_haar[i].astype(np.uint8()) tmp4 = DD_haar[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_HaarWavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_sp.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Haar Wavelet - Image With S\&P Noise', fontsize=20) for i in range(len(SS_haar_sp)): tmp1 = SS_haar_sp[i].astype(np.uint8()) tmp2 = SD_haar_sp[i].astype(np.uint8()) tmp3 = DS_haar_sp[i].astype(np.uint8()) tmp4 = DD_haar_sp[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_HaarWavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_gs.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Haar Wavelet - Image With Gaussian Noise', fontsize=20) for i in range(len(SS_haar_gs)): tmp1 = SS_haar_gs[i].astype(np.uint8()) tmp2 = SD_haar_gs[i].astype(np.uint8()) tmp3 = DS_haar_gs[i].astype(np.uint8()) tmp4 = DD_haar_gs[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_HaarWavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show()
图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Daubechies4 Wavelet - Image Without Noise', fontsize=20) for i in range(len(SS_db4)): tmp1 = SS_db4[i].astype(np.uint8()) tmp2 = SD_db4[i].astype(np.uint8()) tmp3 = DS_db4[i].astype(np.uint8()) tmp4 = DD_db4[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Daubechies4Wavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_sp.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Daubechies4 Wavelet - Image With S\&P Noise', fontsize=20) for i in range(len(SS_db4_sp)): tmp1 = SS_db4_sp[i].astype(np.uint8()) tmp2 = SD_db4_sp[i].astype(np.uint8()) tmp3 = DS_db4_sp[i].astype(np.uint8()) tmp4 = DD_db4_sp[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Daubechies4Wavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_gs.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Daubechies4 Wavelet - Image With Gaussian Noise', fontsize=20) for i in range(len(SS_db4_gs)): tmp1 = SS_db4_gs[i].astype(np.uint8()) tmp2 = SD_db4_gs[i].astype(np.uint8()) tmp3 = DS_db4_gs[i].astype(np.uint8()) tmp4 = DD_db4_gs[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Daubechies4Wavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show()
图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Daubechies6 Wavelet - Image Without Noise', fontsize=20) for i in range(len(SS_db6)): tmp1 = SS_db6[i].astype(np.uint8()) tmp2 = SD_db6[i].astype(np.uint8()) tmp3 = DS_db6[i].astype(np.uint8()) tmp4 = DD_db6[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Daubechies6Wavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_sp.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Daubechies6 Wavelet - Image With S\&P Noise', fontsize=20) for i in range(len(SS_db6_sp)): tmp1 = SS_db6_sp[i].astype(np.uint8()) tmp2 = SD_db6_sp[i].astype(np.uint8()) tmp3 = DS_db6_sp[i].astype(np.uint8()) tmp4 = DD_db6_sp[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Daubechies6Wavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_gs.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Daubechies6 Wavelet - Image With Gaussian Noise', fontsize=20) for i in range(len(SS_db6_gs)): tmp1 = SS_db6_gs[i].astype(np.uint8()) tmp2 = SD_db6_gs[i].astype(np.uint8()) tmp3 = DS_db6_gs[i].astype(np.uint8()) tmp4 = DD_db6_gs[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Daubechies6Wavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show()
图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Mexican Hat Wavelet - Image Without Noise', fontsize=20) for i in range(len(SS_mh)): tmp1 = SS_mh[i].astype(np.uint8()) tmp2 = SD_mh[i].astype(np.uint8()) tmp3 = DS_mh[i].astype(np.uint8()) tmp4 = DD_mh[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_MexicanHatWavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_sp.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Mexican Hat Wavelet - Image With S\&P Noise', fontsize=20) for i in range(len(SS_mh_sp)): tmp1 = SS_mh_sp[i].astype(np.uint8()) tmp2 = SD_mh_sp[i].astype(np.uint8()) tmp3 = DS_mh_sp[i].astype(np.uint8()) tmp4 = DD_mh_sp[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_MexicanHatWavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_gs.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Mexican Hat Wavelet - Image With Gaussian Noise', fontsize=20) for i in range(len(SS_mh_gs)): tmp1 = SS_mh_gs[i].astype(np.uint8()) tmp2 = SD_mh_gs[i].astype(np.uint8()) tmp3 = DS_mh_gs[i].astype(np.uint8()) tmp4 = DD_mh_gs[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_MexicanHatWavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show()
图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Symlet2 Wavelet - Image Without Noise', fontsize=20) for i in range(len(SS_sym2)): tmp1 = SS_sym2[i].astype(np.uint8()) tmp2 = SD_sym2[i].astype(np.uint8()) tmp3 = DS_sym2[i].astype(np.uint8()) tmp4 = DD_sym2[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Symlet2Wavelet_WithoutNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_sp.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Symlet2 Wavelet - Image With S\&P Noise', fontsize=20) for i in range(len(SS_sym2_sp)): tmp1 = SS_sym2_sp[i].astype(np.uint8()) tmp2 = SD_sym2_sp[i].astype(np.uint8()) tmp3 = DS_sym2_sp[i].astype(np.uint8()) tmp4 = DD_sym2_sp[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Symlet2Wavelet_SPNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show() plt.figure(figsize=(12, 8)) plt.subplot(2, 3, 1) plt.imshow(image_gs.astype(np.uint8())) plt.title('Input') plt.xticks([]); plt.yticks([]) plt.suptitle('Symlet2 - Image With Gaussian Noise', fontsize=20) for i in range(len(SS_sym2_gs)): tmp1 = SS_sym2_gs[i].astype(np.uint8()) tmp2 = SD_sym2_gs[i].astype(np.uint8()) tmp3 = DS_sym2_gs[i].astype(np.uint8()) tmp4 = DD_sym2_gs[i].astype(np.uint8()) tmp11 = np.vstack((tmp1, tmp2)) tmp22 = np.vstack((tmp3, tmp4)) tmp = np.hstack((tmp11, tmp22)) plt.subplot(2, 3, i+2) plt.title(f'Decomposition Level: {i+1}') plt.imshow(tmp.astype(np.uint8())) plt.xticks([]); plt.yticks([]) plt.tight_layout() if SAVE_OUNTPUTS: plt.savefig(OUTPUT_DIR+'/2D_Symlet2Wavelet_GaussianNoise'+OUTPUT_FORMAT, bbox_inches='tight') plt.show()
图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

知乎学术咨询:

https://www.zhihu.com/consult/people/?isMe=1

担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。

分割线分割线

基于改进高斯-拉普拉斯滤波器的微震信号平滑降噪方法(MATLAB)

完整数据可通过知乎学术咨询获得

https://www.zhihu.com/consult/people/
图像的离散小波分解(不同种类噪声,Python)

非平稳信号的凸一维全变差降噪方法(MATLAB)

算法可迁移至金融时间序列,地震/微震信号,机械振动信号,声发射信号,电压/电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。

完整数据可通过知乎学术咨询获得

https://www.zhihu.com/consult/people/
图像的离散小波分解(不同种类噪声,Python)

基于广义交叉验证阈值的微震信号降噪方法(MATLAB)

算法可迁移至金融时间序列,地震/微震信号,机械振动信号,声发射信号,电压/电流信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等信号。

完整数据可通过知乎学术咨询获得

https://www.zhihu.com/consult/people/
图像的离散小波分解(不同种类噪声,Python)

集合高阶统计量和小波块阈值的非平稳信号降噪方法-以地震信号为例(MATLAB)

完整数据可通过知乎学术咨询获得

https://www.zhihu.com/consult/people/ 
图像的离散小波分解(不同种类噪声,Python)

一种新的类谱峭度算法的旋转机械故障诊断模型(Python

完整数据可通过知乎学术咨询获得

https://www.zhihu.com/consult/people/
图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

采用8种方法对一维信号进行降噪(Python)

  • NS: noisy signal
  • S: original siganl
  • mean filter: ws = window size
  • median filter:
  • average filter: ns = number of noisy signal(different)
  • bandpass filter: l = low cut-off frequency, h = high …
  • threshold filter: r = ratio(max abs(fft) / min …)
  • wavelet filter: a = threshold
  • std filter:
  • NN: neural network
图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

图像的离散小波分解(不同种类噪声,Python)

完整代码:

https://mbd.pub/o/bread/mbd-ZpyTmJZ

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/171642.html

(0)
上一篇 2025-02-26 14:00
下一篇 2025-02-26 14:05

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信