大家好,欢迎来到IT知识分享网。
从线性代数理解余弦定理,三角不等式,A-G不等式和柯西-许瓦兹不等式
向量的两种运算
scalar multiplication and addition,分别为数乘和加法。两种运算一起有个好听的名字叫linear combination,也就是线性组合。线性组合是线代的基石之一。比如v和w的线性组合表示为,其中a,b为常数
a v → + b w → \begin{aligned} a\overrightarrow v + b\overrightarrow w \end{aligned} av+bw
向量的三种表示方法
- []的形式,如下面这种
[ 1 2 3 ] \begin{aligned}\left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right]\end{aligned} ⎣⎡123⎦⎤
- arrow from 0 → \begin{aligned}\overrightarrow {\rm{0}} \end{aligned} 0
- point in the vector space ,如下图:
向量的内积与向量的长度
内积:两个向量的内积定义为: v T w {v^T}w vTw
如 v = [ 1 2 3 ] \begin{aligned} v = \left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right] \end{aligned} v=⎣⎡123⎦⎤, w = [ 4 5 6 ] \begin{aligned}w = \left[ \begin{array}{l} 4\\ 5\\ 6 \end{array} \right]\end{aligned} w=⎣⎡456⎦⎤, v T w = 1 × 4 + 2 × 5 + 3 × 6 = 32 \begin{aligned}{v^{\rm{T}}}w = 1 \times 4 + 2 \times {\rm{5 + 3}} \times {\rm{6 = 32}}\end{aligned} vTw=1×4+2×5+3×6=32
向量的长度为 ∣ ∣ v ∣ ∣ ||v|| ∣∣v∣∣,且有 ∣ ∣ v ∣ ∣ 2 = v T v \begin{aligned} ||v|{|^2} = {v^T}v \end{aligned} ∣∣v∣∣2=vTv,以上面为例, ∣ ∣ v ∣ ∣ 2 = 1 2 + 2 2 + 3 3 = 14 \begin{aligned}||v|{|^2} = {1^2} + {2^2} + {3^3} = 14\end{aligned} ∣∣v∣∣2=12+22+33=14,其长度为 14 \begin{aligned}\sqrt {14} \end{aligned} 14
单位向量:unit vector, u = v ∣ ∣ v ∣ ∣ \begin{aligned}u{\rm{ = }}\frac{v}{
{||v||}}\end{aligned} u=∣∣v∣∣v,与v同方向的单位向量为 u = 1 14 [ 1 2 3 ] \begin{aligned}u = \frac{1}{
{\sqrt {14} }}\left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right]\end{aligned} u=141⎣⎡123⎦⎤
向量的夹角: u T U = cos θ \begin{aligned}{u^T}U = \cos \theta \end{aligned} uTU=cosθ,U也为单位向量。 cos θ = v T w ∣ ∣ v ∣ ∣ ∣ ∣ w ∣ ∣ \begin{aligned}\cos \theta = \frac{
{
{v^{\rm{T}}}w}}{
{||v||||w||}}\end{aligned} cosθ=∣∣v∣∣∣∣w∣∣vTw
柯西-许瓦兹不等式
根据向量的夹角公式,由于 − 1 ≤ cos θ ≤ 1 \begin{aligned} – 1 \le \cos \theta \le 1 \end{aligned} −1≤cosθ≤1,推出许瓦兹不等式如下:
∣ v T w ∣ ≤ ∣ ∣ v ∣ ∣ . ∣ ∣ w ∣ ∣ \begin{aligned} |{v^T}w| \le ||v||.||w||\end{aligned} ∣vTw∣≤∣∣v∣∣.∣∣w∣∣
其代数表达形式为,下面的v和w为n维向量
( ∑ i = 1 n v i w i ) 2 ≤ ∑ i = 1 n v i 2 ∑ i = 1 n w i 2 \begin{aligned} {\left( {\sum\limits_{i = 1}^n {
{v_i}{w_i}} } \right)^2} \le \sum\limits_{i = 1}^n {
{v_i}^2} \sum\limits_{i = 1}^n {
{w_i}^2} \end{aligned} (i=1∑nviwi)2≤i=1∑nvi2i=1∑nwi2
A-G不等式(arithmetic-geometry inequality)
二维:令 v = [ a b ] , w = [ b a ] \begin{aligned}v{\rm{ = }}\left[ \begin{array}{l} a\\ b \end{array} \right],w = \left[ \begin{array}{l} b\\ a \end{array} \right]\end{aligned} v=[ab],w=[ba],根据许瓦兹不等式可得
2 a b ≤ a 2 + b 2 a b ≤ a + b 2 \begin{aligned} \begin{array}{l} 2ab \le {a^2} + {b^2}\\\displaystyle \sqrt {ab} \le \frac{
{a + b}}{2} \end{array}\end{aligned} 2ab≤a2+b2ab≤2a+b
n维的待证
三角不等式(triangle inequality)
∣ ∣ a + b ∣ ∣ ≤ ∣ ∣ a ∣ ∣ + ∣ ∣ b ∣ ∣ \begin{aligned}||a + b|| \le ||a|| + ||b||\end{aligned} ∣∣a+b∣∣≤∣∣a∣∣+∣∣b∣∣
证明如下
∣ ∣ a + b ∣ ∣ 2 = ∣ ∣ a ∣ ∣ 2 + 2 a T b + ∣ ∣ b ∣ ∣ 2 \begin{aligned}||a + b|{|^2} = ||a|{|^2} + 2{a^T}b + ||b|{|^2}\end{aligned} ∣∣a+b∣∣2=∣∣a∣∣2+2aTb+∣∣b∣∣2
根据许瓦兹不等式易知 ∣ ∣ a ∣ ∣ 2 + 2 a T b + ∣ ∣ b ∣ ∣ 2 ≤ ( ∣ ∣ a ∣ ∣ + ∣ ∣ b ∣ ∣ ) 2 \begin{aligned}||a|{|^2} + 2{a^T}b + ||b|{|^2} \le {\left( {||a|| + ||b||} \right)^2}\end{aligned} ∣∣a∣∣2+2aTb+∣∣b∣∣2≤(∣∣a∣∣+∣∣b∣∣)2,所以 ∣ ∣ a + b ∣ ∣ 2 ≤ ( ∣ ∣ a ∣ ∣ + ∣ ∣ b ∣ ∣ ) 2 \begin{aligned}||a + b|{|^2} \le {\left( {||a|| + ||b||} \right)^2}\end{aligned} ∣∣a+b∣∣2≤(∣∣a∣∣+∣∣b∣∣)2,得证。如果a,b为标量同样也成立
余弦定理
∣ ∣ v − w ∣ ∣ 2 = ∣ ∣ v ∣ ∣ 2 − 2 v T w + ∣ ∣ w ∣ ∣ 2 = ∣ ∣ v ∣ ∣ 2 − 2 ∣ ∣ v ∣ ∣ . ∣ ∣ w ∣ ∣ cos θ + ∣ ∣ w ∣ ∣ 2 \begin{aligned} ||v – w|{|^2} = &||v|{|^2} – 2{v^T}w + ||w|{|^2}\\\displaystyle =& ||v|{|^2} – 2||v||.||w||\cos \theta + ||w|{|^2} \end{aligned} ∣∣v−w∣∣2==∣∣v∣∣2−2vTw+∣∣w∣∣2∣∣v∣∣2−2∣∣v∣∣.∣∣w∣∣cosθ+∣∣w∣∣2
平行四边形对角线与边长的关系
从图中可以看到
∣ ∣ v − w ∣ ∣ 2 + ∣ ∣ v + w ∣ ∣ 2 = 2 ∣ ∣ v ∣ ∣ 2 + 2 ∣ ∣ w ∣ ∣ 2 \begin{aligned} ||v – w|{|^2} + ||v + w|{|^2} = 2||v|{|^2} + 2||w|{|^2}\end{aligned} ∣∣v−w∣∣2+∣∣v+w∣∣2=2∣∣v∣∣2+2∣∣w∣∣2
从向量的角度很直观地知道了平行四边形对角线与边长的关系。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/148229.html