大家好,欢迎来到IT知识分享网。
我们都知道对于在 x 0 x_0 x0处连续且可导的函数 f ( x ) f(x) f(x)和 g ( x ) g(x) g(x),令 h ( x ) = f ( g ( x ) ) h(x)=f(g(x)) h(x)=f(g(x)),若 h ( x ) h(x) h(x)在 x 0 x_0 x0处连续且可导,则 h ′ ( x 0 ) = f ′ ( g ( x 0 ) ) ⋅ g ′ ( x 0 ) h'(x_0)=f'(g(x_0))\cdot g'(x_0) h′(x0)=f′(g(x0))⋅g′(x0)。但是为什么是这样的呢?
求证:对于在 x 0 x_0 x0处连续且可导的函数 f ( x ) f(x) f(x)和 g ( x ) g(x) g(x),令 h ( x ) = f ( g ( x ) ) h(x)=f(g(x)) h(x)=f(g(x)),若 h ( x ) h(x) h(x)在 x 0 x_0 x0处连续且可导,则 h ′ ( x 0 ) = f ′ ( g ( x 0 ) ) ⋅ g ′ ( x 0 ) h'(x_0)=f'(g(x_0))\cdot g'(x_0) h′(x0)=f′(g(x0))⋅g′(x0)
解:
\uad 根据导数定义, h ′ ( x 0 ) = lim x → x 0 h ( x ) − h ( x 0 ) x − x 0 = lim x → x 0 f ( g ( x ) ) − f ( g ( x 0 ) ) x − x 0 h'(x_0)=\lim\limits_{x\rightarrow x_0}\dfrac{h(x)-h(x_0)}{x-x_0}=\lim\limits_{x\rightarrow x_0}\dfrac{f(g(x))-f(g(x_0))}{x-x_0} h′(x0)=x→x0limx−x0h(x)−h(x0)=x→x0limx−x0f(g(x))−f(g(x0))
\uad 因为 g g g为连续函数
\uad 所以当 x → x 0 x\rightarrow x_0 x→x0时, g ( x ) → g ( x 0 ) g(x)\rightarrow g(x_0) g(x)→g(x0)
\uad ①若 g ( x ) ≠ g ( x 0 ) g(x)\neq g(x_0) g(x)=g(x0)
\uad 因为 f ′ ( u 0 ) = lim u → u 0 f ( u ) − f ( u 0 ) u − u 0 f'(u_0)=\lim\limits_{u\rightarrow u_0}\dfrac{f(u)-f(u_0)}{u-u_0} f′(u0)=u→u0limu−u0f(u)−f(u0)
\uad 当 u = g ( x ) , u 0 = g ( x 0 ) u=g(x),u_0=g(x_0) u=g(x),u0=g(x0)时, f ′ ( g ( x 0 ) ) = lim x → x 0 f ( g ( x ) ) − f ( g ( x 0 ) ) g ( x ) − g ( x 0 ) f'(g(x_0))=\lim\limits_{x\rightarrow x_0}\dfrac{f(g(x))-f(g(x_0))}{g(x)-g(x_0)} f′(g(x0))=x→x0limg(x)−g(x0)f(g(x))−f(g(x0))
\uad 又因为 g ′ ( x 0 ) = lim x → x 0 g ( x ) − g ( x 0 ) x − x 0 g'(x_0)=\lim\limits_{x\rightarrow x_0}\dfrac{g(x)-g(x_0)}{x-x_0} g′(x0)=x→x0limx−x0g(x)−g(x0)
\uad 所以 h ′ ( x 0 ) = lim x → x 0 f ( g ( x ) ) − f ( g ( x 0 ) ) x − x 0 = lim x → x 0 f ( g ( x ) ) − f ( g ( x 0 ) ) g ( x ) − g ( x 0 ) ⋅ g ( x ) − g ( x 0 ) x − x 0 = f ′ ( g ( x 0 ) ) ⋅ g ′ ( x 0 ) h'(x_0)=\lim\limits_{x\rightarrow x_0}\dfrac{f(g(x))-f(g(x_0))}{x-x_0}=\lim\limits_{x\rightarrow x_0}\dfrac{f(g(x))-f(g(x_0))}{g(x)-g(x_0)}\cdot \dfrac{g(x)-g(x_0)}{x-x_0}=f'(g(x_0))\cdot g'(x_0) h′(x0)=x→x0limx−x0f(g(x))−f(g(x0))=x→x0limg(x)−g(x0)f(g(x))−f(g(x0))⋅x−x0g(x)−g(x0)=f′(g(x0))⋅g′(x0)
\uad ②若 g ( x ) = g ( x 0 ) g(x)=g(x_0) g(x)=g(x0)
\uad 则 f ( g ( x ) ) = f ( g ( x 0 ) ) f(g(x))=f(g(x_0)) f(g(x))=f(g(x0))
h ′ ( x 0 ) = lim x → x 0 f ( g ( x ) ) − f ( g ( x 0 ) ) x − x 0 = 0 \uad h'(x_0)=\lim\limits_{x\rightarrow x_0}\dfrac{f(g(x))-f(g(x_0))}{x-x_0}=0 h′(x0)=x→x0limx−x0f(g(x))−f(g(x0))=0
f ′ ( g ( x 0 ) ) ⋅ g ′ ( x 0 ) = f ′ ( g ( x 0 ) ) ⋅ lim x → x 0 g ( x ) − g ( x 0 ) x − x 0 = f ′ ( g ( x 0 ) ) × 0 = 0 \uad f'(g(x_0))\cdot g'(x_0)=f'(g(x_0))\cdot \lim\limits_{x\rightarrow x_0}\dfrac{g(x)-g(x_0)}{x-x_0}=f'(g(x_0))\times 0=0 f′(g(x0))⋅g′(x0)=f′(g(x0))⋅x→x0limx−x0g(x)−g(x0)=f′(g(x0))×0=0
\uad 所以 h ′ ( x 0 ) = f ′ ( g ( x 0 ) ) ⋅ g ′ ( x 0 ) h'(x_0)=f'(g(x_0))\cdot g'(x_0) h′(x0)=f′(g(x0))⋅g′(x0)
\uad 综上所述, h ′ ( x 0 ) = f ′ ( g ( x 0 ) ) ⋅ g ′ ( x 0 ) h'(x_0)=f'(g(x_0))\cdot g'(x_0) h′(x0)=f′(g(x0))⋅g′(x0)
由此可得, ( f ( g ( x ) ) ) ′ = f ′ ( g ( x ) ) ⋅ g ′ ( x ) (f(g(x)))’=f'(g(x))\cdot g'(x) (f(g(x)))′=f′(g(x))⋅g′(x)
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/155051.html